A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel rotates with an angular velocity of 0.800 rad/s. A stationary listener is located at a distance from the carousel. The speed of sound is 350 m/s. The longest wavelength reaching the listener from the sirens is closest to

Respuesta :

Answer:

The answer is about 0,59 m or 59 cm the longest wavelength for a listener when the sirens is closest.

Explanation:

Using the equation of the effect Doopler:

[tex]f'= \frac{(V + V_{L}) }{(V + V_{s})}*f_{o}[/tex]

Replacing:

W angular velocity  = 0,8 [tex]\frac{rad}{s}[/tex]

V = 350 [tex]\frac{m}{s}[/tex]

[tex]f_{o} = 600 Hz[/tex]

VL = 0 [tex]\frac{m}{s}[/tex] [tex] ( Is the velocity of the listener,  we assume he is at rest)

Vs = W*Radius ⇒ Vs = 0,8 [tex]\frac{rad}{s}[/tex] * 5 m

Vs = 4 [tex]\frac{m}{s}[/tex]  

Replacing:

[tex]f'= \frac{(V + V_{L}) }{(V + V_{s})}*f_{o}[/tex]

[tex]f'= \frac{350 \frac{m}{s} }{(350 + 4) \frac{m}{s} } * 600 Hz[/tex]

Note: Notice, the division have the same units so, it can be simplify

[tex]f'= 593,220339 Hz[/tex]

Now using the frequency f' as the frequency of the listener to know L wavelength as the relation between f' and V

[tex]L = \frac{V}{f'}[/tex]

[tex]L = \frac{350 \frac{m}{s}  }{ 593,220339 Hz}[/tex]

Note: Remember Hz units are relations inverse of time so: [tex]Hz = \frac{1}{s}[/tex]

[tex]L = \frac{350 \frac{m}{s} }{ 593,220339 \frac{1}{s}}[/tex]

[tex]L = 0,59 m, or, 0,59 cm[/tex]