What is the amplitude, period, and phase shift of f(x) = −2 sin(3x − π) − 1?

Amplitude = 2; period = two times pi over three; phase shift: x equals pi over three
Amplitude = −2; period = 2π; phase shift: x equals pi over three
Amplitude = 2; period = two times pi over three; phase shift: x equals negative pi over three
Amplitude = −2; period = 2π; phase shift: x equals negative pi over three

Respuesta :

Answer:

Amplitude = 2; period = two times pi over three; phase shift: x equals pi over three

Step-by-step explanation:

The given function is [tex]f(x)=-2 \sin(3x-\pi)-1[/tex]

Comparing to [tex]f(x)=a \sin(bx-c)+d[/tex], we have a=-2 , b=3, [tex]c=\pi[/tex] and d=-1.

The amplitude is [tex]|a|[/tex].

This implies that amplitude is [tex]|-2|=2[/tex]

The period is [tex]\frac{2\pi}{|b|}[/tex]

This implies period is [tex]\frac{2\pi}{3}[/tex]

The phase shift is [tex]x=\frac{c}{b}[/tex]

This implies that phase shift is [tex]x=\frac{\pi}{3}[/tex]