Answer:
(A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Explanation:
Given that,
Fringe width d = 0.5 mm
Wavelength = 589 nm
Distance of screen and slit D = 1.5 m
Distance of bright fringe y = 1 cm
(A) We need to calculate the order of the bright fringe
Using formula of wavelength
[tex]\lambda=\dfrac{dy}{mD}[/tex]
[tex]m=\dfrac{d y}{\lambda D}[/tex]
Put the value into the formula
[tex]m=\dfrac{1\times10^{-2}\times0.5\times10^{-3}}{589\times10^{-9}\times1.5}[/tex]
[tex]m=5.65 = 6[/tex]
(B). We need to calculate the width of the bright fringe
Using formula of width of fringe
[tex]\beta=\dfrac{yd}{D}[/tex]
Put the value in to the formula
[tex]\beta=\dfrac{1\times10^{-2}\times0.5\times10^{-3}}{1.5}[/tex]
[tex]\beta=3.33\times10^{-6}\ m[/tex]
[tex]\beta=3.33\ \mu m[/tex]
Hence, (A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.