Answer:
[tex]Q=32.22\dfrac{KW}{m^2}[/tex]
[tex]K_3=1.5\ \frac{W}{m.K}[/tex]
Explanation:
At initial condition
As we know that thermal resistance
[tex]R_{th}=\dfrac{L}{KA}[/tex]
So the total thermal resistance
[tex]R_{th}=\dfrac{L_1}{K_1A}+\dfrac{L_2}{K_2A}[/tex]
Now by putting the values
[tex]R_{th}=\dfrac{L_1}{K_1A}+\dfrac{L_2}{K-2A}[/tex]\
[tex]R_{th}=\dfrac{0.3}{20A}+\dfrac{0.15}{50A}[/tex]
[tex]R_{th}=\dfrac{0.018}{A}\ \frac{K}{W}[/tex]
So the heat conduction
[tex]Q=\dfrac{\Delta T}{R_{th}}[/tex]
[tex]Q=\dfrac{600-20}{0.018}[/tex]
[tex]Q=32.22\dfrac{KW}{m^2}[/tex]
At final condition another layer is added
[tex]Given\ that\ heat\ flux\ is\ 5\ \frac{KW}{m^2}[/tex]
So the total thermal resistance
[tex]R_{th}=\dfrac{L_1}{K_1A}+\dfrac{L_2}{K_2A}+\dfrac{L_3}{K_3A}[/tex]
[tex]R_{th}=\dfrac{0.018}{A}+\dfrac{0.15}{K_3A}\ \frac{K}{W}[/tex]
[tex]\dfrac{0.018}{A}+\dfrac{0.15}{K_3}=\dfrac{\Delta T}{q}[/tex]
[tex]\dfrac{0.018}{A}+\dfrac{0.15}{K_3A}=\dfrac{580}{5000A}[/tex]
[tex]K_3=1.5\ \frac{W}{m.K}[/tex]