Nadawg
contestada


RS has an endpoint at R(6,- 4) and length 17. Which of the following cannot be the coordinates of S?
Choose the correct answer below.
OA (-9,- 12)
O B. (23,-4)
OC. (6,13)
OD. (14.11)
O E. (23.13)

RS has an endpoint at R6 4 and length 17 Which of the following cannot be the coordinates of S Choose the correct answer below OA 9 12 O B 234 OC 613 OD 1411 O class=

Respuesta :

Answer:

Option E (23,13)

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Verify each case

case A) (-9,-12)

Determine the distance and then compare with the given length of 17 units

R(6,-4)

[tex]d=\sqrt{(-4+12)^{2}+(6+9)^{2}}[/tex]

[tex]d=\sqrt{289}[/tex]

[tex]d=17\ units[/tex]

therefore

The given point can be the coordinates of S because the length RS is 17 units

case B) (23,-4)

Determine the distance and then compare with the given length of 17 units

R(6,-4)

[tex]d=\sqrt{(-4+4)^{2}+(6-23)^{2}}[/tex]

[tex]d=\sqrt{289}[/tex]

[tex]d=17\ units[/tex]

therefore

The given point can be the coordinates of S because the length RS is 17 units

case C) (6,13)

Determine the distance and then compare with the given length of 17 units

R(6,-4)

[tex]d=\sqrt{(-4-13)^{2}+(6-6)^{2}}[/tex]

[tex]d=\sqrt{289}[/tex]

[tex]d=17\ units[/tex]

therefore

The given point can be the coordinates of S because the length RS is 17 units

case D) (14,11)

Determine the distance and then compare with the given length of 17 units

R(6,-4)

[tex]d=\sqrt{(-4-11)^{2}+(6-14)^{2}}[/tex]

[tex]d=\sqrt{289}[/tex]

[tex]d=17\ units[/tex]

therefore

The given point can be the coordinates of S because the length RS is 17 units

case E) (23,13)

Determine the distance and then compare with the given length of 17 units

R(6,-4)

[tex]d=\sqrt{(-4-13)^{2}+(6-23)^{2}}[/tex]

[tex]d=\sqrt{578}[/tex]

[tex]d=24.04\ units[/tex]

therefore

The given point cannot be the coordinates of S because the length RS is not 17 units