A random sample of 56 lithium batteries has a mean life of 645 hours with a population standard deviation of 31 hours. Compute the​ 95% confidence interval for mu. A. ​(636.9, 653.1) B. ​(712.0, 768.0) C. ​(539.6, 551.2) D. ​(112.0, 118.9)

Respuesta :

Answer: A. ​(636.9, 653.1)

Step-by-step explanation:

Given : Sample size : n=56

Significance level :[tex]\alpha: 1-0.95=0.05[/tex]

Critical value :[tex]z_{0.05}=1.96[/tex]

Sample mean : [tex]\overline{x}=645\text{ hours}[/tex]

Standard deviation : [tex]\sigma= 31\text{ hours}[/tex]

The 95% confidence interval for population mean is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}\\\\=645\pm (1.96)\dfrac{31}{\sqrt{56}}\\\\=645\pm8.1\\\\=(636.9, 653.1) [/tex]

Hence,  95% confidence interval for population mean is (636.9, 653.1).