Answer:
Polarizing angle, [tex]\theta_{P} = tan^{- 1}{2.2} = 65.56^{\circ}[/tex]
Given:
Critical angle, [tex]\theta_{cr} = 27^{\circ}[/tex]
Solution:
Now, in Total Internal Reflection (TIR), the critical angle for cubic zirconia is given by:
[tex]sin\theta_{cr} = \frac{1}{\mu_{Z}}[/tex] (1)
where
[tex]{\mu_{Z}[/tex] = refractive index of zirconia
From eqn (1):
[tex]\mu_{Z} = \frac{1}{sin\theta_{cr}}[/tex]
[tex]\mu_{Z} = \frac{1}{sin(27^{\circ})} = 2.2[/tex]
Now, the angle of polarization is given by:
tan[tex]\theta_{P} = \mu_{Z}[/tex]
Therefore,
[tex]\theta_{P} = tan^{- 1}{2.2} = 65.56^{\circ}[/tex]