An automobile engine slows down from 4500 rpm to 1200 rpm in 2.5 seconds. (A) Calculate its angular acceleration. (Give your answer in radians per second squared written as rad/s^2)

Respuesta :

Answer:

-138.23 [tex]rad/s^2[/tex]

Explanation:

The initial angular velocity = 4500 rpm

The final angular velocity = 1200 rpm

1 revolution = 2π radians

1 minute = 60 seconds

So,

[tex]Initial\ velocity=\frac {4500\times 2\pi}{60}\ radians/sec=471.2389\ radians/sec[/tex]

[tex]Final\ velocity=\frac {1200\times 2\pi}{60}\ radians/sec=125.6637\ radians/sec[/tex]

Time = 2.5 seconds

Angular acceleration is:

[tex]\alpha=\frac {\omega_f-\omega_i}{t}[/tex]

[tex]\alpha=\frac {125.6637-471.2389}{2.5}\ rad/s^2[/tex]

Angular acceleration =- 138.23 [tex]rad/s^2[/tex]