gvcci
contestada

S = kr^(2)+krl, for K

... I've been trying to solve it but I keep getting different answers. If someone can show me the steps in getting the answer; I'll appreciate it.

Respuesta :

Start with

[tex]S=kr^2+krl[/tex]

Factor k on the right hand side:

[tex]S=k(r^2+rl)[/tex]

Assuming [tex]r^2+rl\neq 0[/tex], divide both sides by this quantity:

[tex]\dfrac{S}{r^2+rl}=\dfrac{k(r^2+rl)}{r^2+rl}[/tex]

Simplify the right hand side:

[tex]\dfrac{S}{r^2+rl}=k[/tex]

And thus we have solved the expression for k:

[tex]k=\dfrac{S}{r^2+rl}[/tex]

Answer:

k = S/(r^2 + rl).

Step-by-step explanation:

S = kr^(2) + krl

Factor the right side:

S = k(r^2 + rl)

Divide both sides by (r^2 + rl):

k = S/(r^2 + rl).