A light source of wavelength, l, illuminates a metal and ejects photoelectrons with a maximum kinetic energy of 1 eV. A second light source of wavelength l/2 ejects photoelectrons with a maximum kinetic energy of 4 eV. What is the work function of the metal

Respuesta :

Explanation:

From first source, kinetic energy ([tex]K.E_{1}[/tex]) ejected is 1 eV and wavelength of light is [tex]\lambda[/tex].

From second source, kinetic energy ([tex]K.E_{2}[/tex]) ejected is 4 eV and wavelength of light is [tex]\frac{\lambda}{2}[/tex].

Relation between work function, wavelength, and kinetic energy is as follows.

                   K.E = [tex]\frac{hc}{\lambda} - \phi[/tex]

where,        h = Plank's constant = [tex]6.63 \times 10^{-34}[/tex] J.s

                   c = speed of light = [tex]3 \times 10^{8}[/tex] m/s

Also, it is known that 1 eV = [tex]1.6 \times 10^{-19}[/tex] J

Therefore, substituting the values in the above formula as follows.

  • From first source,

                      [tex]K.E_{1}[/tex] = [tex]\frac{hc}{\lambda} - \phi[/tex]  

            1 eV = [tex]1.6 \times 10^{-19} J = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda} - \phi[/tex]    

    [tex]1.6 \times 10^{-19} J = \frac{1.98 \times 10^{-25} J.m}{\lambda} - \phi[/tex]        ........... (1)

  • From second source,

                  [tex]K.E_{2}[/tex] = [tex]\frac{hc}{\lambda} - \phi[/tex]  

          [tex]4 \times 1.6 \times 10^{-19} J = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\frac{\lambda}{2}} - \phi[/tex]        

                 [tex]6.4 \times 10^{-19} J = \frac{2 \times 1.98 \times 10^{-25} J.m}{\lambda} - \phi[/tex]        ........... (2)        

Now, divide equation (2) by 2. Therefore, it will become

       [tex]{6.4 \times 10^{-19}J}{2} = \frac{2 \times 1.98 \times 10^{-25} J.m}{2\lambda} - \frac{\phi}{2}[/tex]

                [tex]3.2 \times 10^{-19}J = \frac{1.98 \times 10^{-25} J.m}{\lambda} - \frac{\phi}{2}[/tex]   ......... (3)

Now, subtract equation (3) from equation (1), we get the following.

                 [tex]1.6 \times 10^{-19} = \frac{\phi}{2}[/tex]

                    [tex]\phi[/tex] = [tex]3.2 \times 10^{-19}[/tex]

                          = 2 eV

Thus, we can conclude that work function of the metal is 2 eV.