Answer:
137.74 m/s
Explanation:
[tex]L[/tex] = length of the string = 42 m
[tex]m[/tex] = mass of the string = 18.8 g = 0.0188 kg
Linear mass density is given as
[tex]\mu =\frac{m}{L}[/tex]
[tex]\mu =\frac{0.0188}{42}[/tex]
[tex]\mu[/tex] = 0.000448 kg/m
[tex]v[/tex] = wave speed
[tex]T[/tex] = Tension force in the string = 8.5 N
Wave speed is given as
[tex]v = \sqrt{\frac{T}{\mu }}[/tex]
[tex]v = \sqrt{\frac{8.5}{0.000448 }}[/tex]
[tex]v[/tex] = 137.74 m/s