Answer:
[tex]f(x)-(-g(x))[/tex] is equivalent to [tex]f(x)+g(x)[/tex].
Step-by-step explanation:
Given : Functions [tex]f(x)=3x-7[/tex] and [tex]g(x)=-2x+5[/tex]
To find : [tex]f(x)-(-g(x))[/tex] is equivalent to [tex]f(x)+g(x)[/tex] ?
Solution :
[tex]f(x)=3x-7[/tex]
[tex]g(x)=-2x+5[/tex]
[tex]-g(x)=-(-2x+5)=2x-5[/tex]
First we determine,
[tex]f(x)+g(x)=3x-7+(-2x+5)[/tex]
[tex]f(x)+g(x)=3x-7-2x+5[/tex]
[tex]f(x)+g(x)=x-2[/tex]
Now, we find
[tex]f(x)-(-g(x))=3x-7-(2x-5)[/tex]
[tex]f(x)-(-g(x))=3x-7-2x+5[/tex]
[tex]f(x)-(-g(x))=x-2[/tex]
So, [tex]f(x)-(-g(x))[/tex] is equivalent to [tex]f(x)+g(x)[/tex].