Answer:
[tex]AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}[/tex]
Step-by-step explanation:
For two matrix P and Q, the product, say PQ is defined when:
The number of columns of P = The number of rows of Q
Since A is a 2×2 matrix and B is also a 2×2 matrix
Thus both AB and BA are possible.
So AB is:
[tex]AB\Rightarrow\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\\AB\Rightarrow\quad \begin{bmatrix}3\times 1+3\times (-1) & 6\times 1+3\times 1\\3\times 2+1\times (-1) & 6\times 2+1\times 1\end{bmatrix}\\AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}[/tex]
BA is:
[tex]BA\Rightarrow\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\\BA\Rightarrow\quad \begin{bmatrix}3\times 1+6\times 2 & 3\times 3+6\times 1\\(-1)\times 1+1\times 2 & (-1)\times 3+1\times 1\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}[/tex]