Answer with Step-by-step explanation:
Let A, B and C are arbitrary sets within a universal set U.
We have to prove that [tex]( A/B)\times C=(A\times C)/(B\times C)[/tex] is always true.
Let [tex](x,y)\in (A/B)\times C[/tex]
Then [tex] x\in(A/B) [/tex] and [tex] y\in C[/tex]
Therefore, [tex] x\in A[/tex] and [tex] x\notin B[/tex]
Then, (x,y) belongs to [tex] A\times C[/tex]
and (x,y) does not belongs to [tex] B\times C[/tex]
Hence,[tex] (x,y)\in(A\times C)/(B\times C)[/tex]
Conversely ,Let (x ,y)belongs to [tex] (A\times C)/(B\times C)[/tex]
Then [tex] (x,y)\in (A\times C)[/tex] and [tex] (x,y)\notin (B\times C)[/tex]
Therefore,[tex] x\in A,y\in C[/tex] and [tex] x\notin B,y\in C[/tex]
[tex] x\in(A/B)[/tex] and [tex]y\in C[/tex]
Hence, [tex] (x,y)\in(A/B)\times C[/tex]
Therefore,[tex] (A/B)\times C=(A\times C)/(B\times C)[/tex] is always true.
Hence, proved.