Respuesta :

ealjkj

Answer:

[tex] -(\lambda -4)(\lambda -2)(\lambda +2) [/tex]

Step-by-step explanation:

What we want to fator is:

[tex] -\lambda^3 + 4 \lambda^2 + 4\lambda - 16[/tex]

There is no common factor, but let's factor it by grouping. The first two addends can be factor as follows:

[tex]-\lambda^3 + 4 \lambda^2 = \lambda^2(-\lambda + 4) = -\lambda^2(\lambda - 4)[/tex]

the second addends can be factor as well:

[tex]4\lambda - 16 = 4(\lambda- 4)[/tex].

Then our original expression can be rewritten like

[tex]-\lambda^3 + 4 \lambda^2 + 4\lambda -16=\lambda^2(\lambda - 4) + 4(\lambda - 4)[/tex]

And here the [tex](\lambda-4)[/tex] is the common factor!

[tex] -\lambda^2(\lambda - 4) + 4(\lambda - 4) = (\lambda - 4)(-\lambda^2 + 4)[/tex]

Finally, we can factor the quadratic expression as a difference of squares [tex] -\lambda^2 + 4 = 4 - \lambda^2 = (2+\lambda)(2-\lambda)[/tex]

Ant we get

[tex](\lambda - 4)(-\lambda^2 + 4)= (\lambda - 4)(\lambda + 2)(2-\lambda)[/tex]

now, we can extract the negative sign from [tex](2-\lambda)[/tex], and we get

[tex] -(\lambda -4)(\lambda -2)(\lambda +2) [/tex].