Answer:
[tex](2/7)^{2} (7/9)^{2}(2/7)^{2} (7/9)^{2} = \frac{16}{6561}[/tex]
Step-by-step explanation:
[tex](2/7)^{2} (7/9)^{2}(2/7)^{2} (7/9)^{2}[/tex]
1. Do what is in parenthesis first. You can distribute the exponent to both the numerator and demonitator of each fraction in order to operate.
[tex]\frac{2^{2} }{7^{2} } \frac{7^{2}} {9^{2} } \frac{2^{2} }{7^{2} } \frac{7^{2}} {9^{2} }[/tex]
2. Exponents (ie Powers and Square Roots, etc.)
[tex]\frac{4}{49} \frac{49}{81} \frac{4}{49} \frac{49}{81}[/tex]
3. Multiplication and Division (left-to-right)
[tex]\frac{4}{81} \frac{4}{49} \frac{49}{81}[/tex]
[tex]\frac{4}{81} \frac{4}{49} \frac{49}{81}[/tex] = [tex]\frac{4}{49} \frac{49}{81} \frac{4}{81}[/tex]
[tex]\frac{4}{49} \frac{49}{81} \frac{4}{81}[/tex] = [tex]\frac{4}{81} \frac{4}{81}[/tex]
So: [tex]\frac{4}{81} \frac{4}{81}[/tex] = [tex]\frac{16}{6561}[/tex]