Use the order of operations to simplify. (2/7)^2. (7/9)^2 (2/7)^2. (7/9)^2 = (Simplify your answer. Type a whole number or a fraction.)

Respuesta :

Answer:

[tex](2/7)^{2} (7/9)^{2}(2/7)^{2} (7/9)^{2} = \frac{16}{6561}[/tex]

Step-by-step explanation:

[tex](2/7)^{2} (7/9)^{2}(2/7)^{2} (7/9)^{2}[/tex]

1. Do what is in parenthesis first. You can distribute the exponent to both the numerator and demonitator of each fraction in order to operate.

   [tex]\frac{2^{2} }{7^{2} } \frac{7^{2}} {9^{2} } \frac{2^{2} }{7^{2} } \frac{7^{2}} {9^{2} }[/tex]

2. Exponents (ie Powers and Square Roots, etc.)

   [tex]\frac{4}{49} \frac{49}{81} \frac{4}{49} \frac{49}{81}[/tex]

3. Multiplication and Division (left-to-right)

    [tex]\frac{4}{81} \frac{4}{49} \frac{49}{81}[/tex]

  • since multiplication is commutative then :

       [tex]\frac{4}{81} \frac{4}{49} \frac{49}{81}[/tex] = [tex]\frac{4}{49} \frac{49}{81} \frac{4}{81}[/tex]

  • therefore

        [tex]\frac{4}{49} \frac{49}{81} \frac{4}{81}[/tex] = [tex]\frac{4}{81} \frac{4}{81}[/tex]

So: [tex]\frac{4}{81} \frac{4}{81}[/tex] = [tex]\frac{16}{6561}[/tex]