Answer:
[tex]2.3[/tex]%
Step-by-step explanation:
Surface area of a human body is given by -
[tex]S = 0.1901* w^{0.425}* h^{0.725}\\[/tex]
Taking integral on both sides, we get -
[tex]In S = 0.425 ln w + 0.725 ln h + ln 0.1091\\\frac{dS}{S} = 0.425\frac{dw}{w} + 0.725\frac{dh}{h}\\[/tex]
Since, the at most error in the surface area of a human body is [tex]2[/tex]%
Substituting this in above equation, we get -
[tex]\frac{dS}{S} \leq [0.425*0.02 + 0.725*0.02]\\\frac{dS}{S} \leq0.023\\[/tex]
Thus, the maximum error is surface area is equal to
[tex]0.023 * 100\\= 2.3[/tex]%