Answer:
[tex]\Delta a=-0.166 cm [/tex]
[tex]\Delta b=-0.249 cm [/tex]
[tex]\Delta c=-0.332 cm [/tex]
Explanation:
Given that E=600 KPa
Poisson ratio=0.45
We know that for hydroststic stress ,strain given as
[tex]\varepsilon =\dfrac{\sigma}{E}(2\mu -1)[/tex]
Here given that [tex]\sigma =-50 KPa[/tex]
Now by putting the values
[tex]\varepsilon =\dfrac{50}{600}(2\times 0.45 -1)[/tex]
[tex]\varepsilon =-0.00833[/tex]
Negative sign indicates that dimensions will reduces due to compressive stress
We know that strain given as
[tex]\varepsilon =\dfrac{\Delta L}{L}[/tex]
Lets take a=20 cm,b=30 cm,c=40 cm.
So [tex]\Delta a=-0.00833\times 20 cm [/tex]
[tex]\Delta a=-0.166 cm [/tex]
[tex]\Delta b=-0.00833\times 30 cm [/tex]
[tex]\Delta b=-0.249 cm [/tex]
[tex]\Delta c=-0.00833\times 40 cm [/tex]
[tex]\Delta c=-0.332 cm [/tex]