Respuesta :
[tex]y'=ky[/tex] is a separable ODE:
[tex]\dfrac{\mathrm dy}{\mathrm dt}=ky\implies\dfrac{\mathrm dy}y=k\,\mathrm dt[/tex]
Integrating both sides and solving for [tex]y[/tex], we get
[tex]\ln|y|=kt+C\implies y=e^{kt+C}\implies\boxed{y=Ce^{kt}}[/tex]
Given that [tex]y(3)=2[/tex], we know
[tex]2=Ce^{3k}[/tex]
We also have
[tex]y'=Cke^{kt}[/tex]
and given that [tex]y'(3)=4[/tex], we know
[tex]4=Cke^{3k}[/tex]
Then
[tex]Cke^{3k}=2Ce^{3k}\implies Ck=2C\implies k=2\text{ or }C=0[/tex]
- If [tex]k=2[/tex], then [tex]2=Ce^6\implies C=2e^{-6}[/tex].
- If [tex]C=0[/tex], then we get a contradiction because we need to have [tex]Ce^{3k}=2[/tex].
So it must the case that [tex]k=2[/tex].
The value of [tex]k[/tex] is 2.
In this case we have an ordinary linear differential equation with separable variables:
[tex]y' = k\cdot y[/tex] (1)
If we know that [tex]y = 2[/tex] and [tex]y' = 4[/tex], then the value of [tex]k[/tex] is:
[tex]k = \frac{y'}{y}[/tex]
[tex]k = \frac{4}{2}[/tex]
[tex]k = 2[/tex]
The value of [tex]k[/tex] is 2.
We kindly invite to check to this question on differential equations: https://brainly.com/question/14620493