Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :
[tex]k=\dfrac{1}{2}mv^2[/tex]
[tex]k=\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2[/tex]
k = 1150 J
In two significant figure, [tex]k=1.2\times 10^3\ J[/tex]
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. [tex]P=\dfrac{W}{t}=\dfrac{\Delta K}{t}[/tex]
[tex]P=\dfrac{\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2}{10\ s}[/tex]
P = 115 watts
In two significant figures, [tex]P=1.2\times 10^2\ Watts[/tex]
Hence, this is the required solution.