Respuesta :

gmany

Answer:

The first table.

Step-by-step explanation:

If from a table a ratio

[tex]\dfrac{y_2-y1}{x_2-x_1}[/tex]

is constant, then a table represents a linear function.[tex]\begin{array}{c|c}x&y\\1&-2\\2&-10\\3&-18\\4&-26\end{array}\\\\\dfrac{-10-(-2)}{2-1}=\dfrac{-8}{1}=-8\\\dfrac{-18-(-10)}{3-2}=\dfrac{-8}{1}=-8\\\dfrac{-26-(-18)}{4-3}=\dfrac{-8}{1}=-8[/tex]

[tex]\begin{array}{c|c}x&y\\1&-2\\2&-4\\3&-8\\4&-16\end{array}\\\\\dfrac{-4-(-2)}{2-1}=\dfrac{-2}{1}=-2\\\dfrac{-8-(-4)}{3-2}=\dfrac{-4}{1}=-4[/tex]