Answer:
[tex]\text{The slope:}\ m=-\dfrac{7}{8}\\\\\text{The point-slope form:}\ y+4=-\dfrac{7}{8}(x-7)\\\\\text{The slope-intercept form:}\ y=-\dfrac{7}{8}x+\dfrac{17}{8}[/tex]
Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have two points (7, -4) amd (-1, 3).
Calculate the slope:
[tex]m=\dfrac{3-(-4)}{-1-7}=\dfrac{7}{-8}=-\dfrac{7}{8}[/tex]
The point-slope form of an equation of a line:
[tex]y-(-4)=-\dfrac{7}{8}(x-7)\\\\y+4=-\dfrac{7}{8}(x-7)[/tex]
Convert to the slope-intercept form:
[tex]y+4=-\dfrac{7}{8}(x-7)[/tex] use the distributive property
[tex]y+4=-\dfrac{7}{8}x+\dfrac{49}{8}[/tex] subtract 4 = 32/8 from both sides
[tex]y=-\dfrac{7}{8}x+\dfrac{17}{8}[/tex]