write various of the equation of a line that passes through (-6, 3) and has a slope of - 1/3

part 1:write the equation in point slope form

part 2: rewrite the equation in slope intercept form

part 3: rewrite the equation in a standard form

Respuesta :

gmany

Answer:

[tex]\large\boxed{y-3=-\dfrac{1}{3}(x+6)-\text{point-slope form}}\\\boxed{y=-\dfrac{1}{3}x+1-\text{slope-intercept form}}\\\boxed{x+3y=3-\text{standard form}}[/tex]

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

We have

[tex]m=-\dfrac{1}{3},\ (-6,\ 3)\to x_1=-6,\ y_1=3[/tex]

Substitute:

[tex]y-3=-\dfrac{1}{3}(x-(-6))\\\\y-3=-\dfrac{1}{3}(x+6)[/tex]

Convert to the slope-intercept form

[tex]y=mx+b[/tex]

[tex]y-3=-\dfrac{1}{3}(x+6)[/tex]           use the distributive property

[tex]y-3=-\dfrac{1}{3}x-2[/tex]           add 3 to both sides

[tex]y=-\dfrac{1}{3}x+1[/tex]

Convert to the standard form

[tex]Ax+By=C[/tex]

[tex]y=-\dfrac{1}{3}x+1[/tex]           multiply both sides by 3

[tex]3y=-x+3[/tex]             add x to both sides

[tex]x+3y=3[/tex]