Consider the two functions shown below.

ANSWER
B. The functions f(x) and g(x) because f(g(x))=g(f(x))=x
EXPLANATION
The given functions are:
[tex]f(x) = 2x - 2[/tex]
and
[tex]g(x) = \frac{1}{2}x + 1[/tex]
If f(x) and g(x) are inverses, then
f(g(x))=x
[tex]f(g(x))=f( \frac{1}{2} x + 1)[/tex]
[tex]f(g(x))=2( \frac{1}{2}x + 1) - 2[/tex]
Expand the parenthesis to obtain,
[tex]f(g(x))=x + 2- 2[/tex]
[tex]f(g(x))=x[/tex]
Also,
[tex]g(f(x)) = g(2x - 2)[/tex]
[tex]g(f(x)) = \frac{1}{2} (2x - 2) + 1[/tex]
[tex]g(f(x)) = x - 1+ 1[/tex]
[tex]g(f(x)) = x [/tex]
Hence f(x) and g(x) are inverses
Answer: Option B
Then The functions f(x) and g(x) are inverses because [tex]f(g(x))=g(f(x))=x[/tex]
Step-by-step explanation:
To answer this question we must make the composition of f (x) and g (x)
We found
[tex]f (g(x))[/tex]
We know that
[tex]f(x) = 2x-2\\\\g(x) = \frac{1}{2}x + 1[/tex]
By definition if two functions f and g are inverses then it follows that:
[tex]f(g(x)) = g(f(x)) = x[/tex]
So if [tex]f(g(x)) = x[/tex] f and g are inverse
To find [tex]f(g(x))[/tex] enter the function g(x) within the function f(x) as shown below
[tex]f(g(x))= 2( \frac{1}{2}x + 1)-2\\\\f(g(x))= x + 2 -2\\\\f(g(x))= x[/tex]
Now
[tex]g(f(x))= \frac{1}{2}(2x-2) + 1\\\\g(f(x))= x-1 + 1\\\\g(f(x))= x[/tex]
Observe that
[tex]f(g(x))=g(f(x))=x[/tex]
Then The functions f(x) and g(x) are inverses because [tex]f(g(x))=g(f(x))=x[/tex]