Answer:
[tex]\boxed{\text{0.0301 g}}[/tex]
Step-by-step explanation:
1. Calculate the initial moles of H₂S
We can use Avogadro's law: the number of moles of a gas is directly proportional to the volume if the pressure and temperature are constant.
[tex]\dfrac{n_{1} }{V_{1}} = \dfrac{n_{2}}{V_{2}}\\\\\dfrac{n_{1}}{\text{44.2 mL}} = \dfrac{1.97 \times 10^{-3} \text{ mol}}{\text{98.5 mL }}\\\\\dfrac{n_{1}}{44.2} = 2.00 \times 10^{-5} \text{ mol}\\\\n_{1} = 44.2 \times 2.00 \times 10^{-5} \text{ mol} = 8.84 \times 10^{-4} \text{ mol}[/tex]
2. Calculate the initial mass of H₂S
[tex]\text{Mass of H$_{2}$S} = 8.84 \times 10^{-4}\text{ mol H$_{2}$S} \times \dfrac{\text{34.08 g H$_{2}$S}}{\text{1 mol H$_{2}$S}} = \text{0.0301 g H$_{2}$S}\\\\\text{The container initially held }\boxed{\textbf{0.0301 g H$_{2}$S}}[/tex]