Completing the square gives
[tex]y=8x-x^2=16-(x-4)^2[/tex]
and
[tex]16=16-(x-4)^2\implies(x-4)^2=0\implies x=4[/tex]
tells us the parabola intersect the line [tex]y=16[/tex] at one point, (4, 16).
Then the volume of the solid obtained by revolving shells about [tex]x=0[/tex] is
[tex]\displaystyle\pi\int_0^4x(16-(8x-x^2))\,\mathrm dx=\pi\int_0^4(x-4)^2\,\mathrm dx[/tex]
[tex]=\pi\dfrac{(x-4)^3}3\bigg|_{x=0}^{x=4}=\boxed{\dfrac{64\pi}3}[/tex]