Respuesta :

ANSWER

[tex]{f}^{ - 1}(x) = ln(x)[/tex]

EXPLANATION

The given function is

[tex]f(x) = {e}^{x} [/tex]

Let

[tex]y={e}^{x} [/tex]

We interchange x and y.

[tex]x={e}^{y} [/tex]

Solve for y.

[tex]y = ln(x) [/tex]

This implies that,

[tex] {f}^{ - 1}(x) = ln(x) [/tex]

The correct answer is C

Answer:

[tex]f^{-1}(x)=ln(x)[/tex]

Step-by-step explanation:

Given function is [tex]f\left(x\right)=e^x[/tex].

Now we need to find it's inverse so follow these steps:

Step 1: replace f(x) with y.

[tex]y=e^x[/tex]

Step 2: Switch x and y.

[tex]x=e^y[/tex]

Step 3: Solve for y.

[tex]x=e^y[/tex]

[tex]ln(x)=ln(e^y)[/tex]

[tex]ln(x)=y[/tex]

[tex]y=ln(x)[/tex]

Step 4: Replace y with [tex]f^{-1}(x)[/tex].

[tex]f^{-1}(x)=ln(x)[/tex]

Hence final answer is [tex]f^{-1}(x)=ln(x)[/tex].