What is the inverse of the function below?

ANSWER
[tex]{f}^{ - 1}(x) = ln(x)[/tex]
EXPLANATION
The given function is
[tex]f(x) = {e}^{x} [/tex]
Let
[tex]y={e}^{x} [/tex]
We interchange x and y.
[tex]x={e}^{y} [/tex]
Solve for y.
[tex]y = ln(x) [/tex]
This implies that,
[tex] {f}^{ - 1}(x) = ln(x) [/tex]
The correct answer is C
Answer:
[tex]f^{-1}(x)=ln(x)[/tex]
Step-by-step explanation:
Given function is [tex]f\left(x\right)=e^x[/tex].
Now we need to find it's inverse so follow these steps:
Step 1: replace f(x) with y.
[tex]y=e^x[/tex]
Step 2: Switch x and y.
[tex]x=e^y[/tex]
Step 3: Solve for y.
[tex]x=e^y[/tex]
[tex]ln(x)=ln(e^y)[/tex]
[tex]ln(x)=y[/tex]
[tex]y=ln(x)[/tex]
Step 4: Replace y with [tex]f^{-1}(x)[/tex].
[tex]f^{-1}(x)=ln(x)[/tex]
Hence final answer is [tex]f^{-1}(x)=ln(x)[/tex].