Respuesta :

Answer: [tex]x=\frac{8}{3}[/tex]

Step-by-step explanation:

By the Intersecting secants theorem, we know that:

[tex]EC*ED=EB*EA[/tex]

Then, substituting, we get:

[tex](x+4)(x+4+1)=(x+1)(x+1+11)\\\\(x+4)(x+5)=(x+1)(x+12)[/tex]

Now we need to expand the expression:

[tex]x^2+5x+4x+20=x^2+12x+x+12[/tex]

Simplifying, we get that the value  of "x" is:

[tex]x^2+9x+20=x^2+12x+12\\\\9x+20=12x+12\\\\20-12=12x-9x\\\\8=3x\\\\x=\frac{8}{3}[/tex]