Consider triangle PQR. What is the length of side QR?
A. 8 units
B. 8/3 units
C. 16 units
D. 16/3 units

ANSWER
C) 16
EXPLANATION
Using the Pythagoras Theorem, we obtain:
QR² =PR²+ PQ²
From the diagram,
[tex]PQ = 8 \sqrt{3} [/tex]
[tex]PR=8[/tex]
We substitute into the formula to get;
[tex]|QR| ^{2} = {8}^{2} + {(8 \sqrt{3} )}^{2} [/tex]
[tex]|QR| ^{2} = 64+ 192[/tex]
[tex]|QR| ^{2} = 256[/tex]
Take square root
[tex]|QR| = \sqrt{256} [/tex]
[tex]|QR| = 16[/tex]
Answer:
The length of side QR is 16 units.
Option C is correct.
Step-by-step explanation:
Given a right angled triangle QPR in which length of sides are
[tex]PQ=8\sqrt3 units[/tex]
[tex]PR=8 units[/tex]
we have to find the length of side QR
As QPR is right angled triangle therefore we apply Pythagoras theorem
[tex](hypotenuse)^2=(Base)^2+(Perpendicular)^2[/tex]
[tex]QR^2=PQ^2+PR^2[/tex]
[tex]QR^2=(8\sqrt3)^2+8^2[/tex]
[tex]QR^2=192+64=256[/tex]
Take square root on both sides
[tex]QR=16 units[/tex]
Hence, the length of side QR is 16 units.
Option C is correct.