PLEASE HELP!!!

How is [tex] \sqrt[7]{x^5} *\sqrt[7]{x^5} [/tex] equal too [tex] x\sqrt[7]{x^3} [/tex] ? Please write the steps and properties of how you obtain [tex] x\sqrt[7]{x^3} [/tex] as a result of the equation.

Respuesta :

First combine the roots:

[tex]\sqrt[7]{x^5}\cdot\sqrt[7]{x^5}=\sqrt[7]{x^5\cdot x^5}=\sqrt[7]{x^{10}}[/tex]

Now use the fact that [tex]\sqrt[n]{x^n}=x[/tex] (for odd [tex]n[/tex]):

[tex]\sqrt[7]{x^{10}}=\sqrt[7]{x^7\cdot x^3}=\sqrt[7]{x^7}\cdot\sqrt[7]{x^3}=x\sqrt[7]{x^3}[/tex]