Respuesta :

Answer:

Option D. [tex]150\°[/tex]

Step-by-step explanation:

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

[tex]m\angle ABC=\frac{1}{2}[arc\ ADC-arc\ AC][/tex]

substitute the given values

[tex]30\°=\frac{1}{2}[210\°-arc\ AC][/tex]

[tex]60\°=[210\°-arc\ AC][/tex]

[tex]arc\ AC=210\°-60\°=150\°[/tex]

Answer:

Option (D) is correct.

Step-by-step explanation:

OA is perpendicular to AB

OC is perpendicular to BC

Radius from the center is perpendicular to the tangent.

In quadrilateral ABCO,

∠ABC+∠BCO+∠AOC+∠OAB=360°

30°+90°+∠AOC+90°=360°

∠AOC+210°=360°

∠AOC=360°-210°

∠AOC=150°

Hence, arc AC=150°

Thus, the correct answer is option (D)