Respuesta :

The answer is B i had this problem.

Answer: OPTION B

Step-by-step explanation:

Multiply both denominators to find the Least Common Denominator:

[tex]LCD=(3y-4)(y^2)[/tex]

Now, divide each original denominator by the LCD and multiply the result by each numerator. Then:

[tex]=\frac{(6y^2+2y)(y^2)-(9y-7)(3y-4)}{(3y-4)(y^2)}[/tex]

Applying Distributive property, you get:

[tex]=\frac{6y^4+2y^3-(27y^2-36y-21y+28)}{3y^3-4y^2}\\\\=\frac{6y^4+2y^3-27y^2+36y+21y-28}{3y^3-4y^2}[/tex]

Add the like terms in the numerator:

[tex]=\frac{6y^4+2y^3-27y^2+57y-28}{3y^3-4y^2}[/tex]