Which pair of functions is not a pair of inverse functions?
A. f(x)= x+1/6 and g(x)= 6x-1
B. f(x)= x-4/19 and g(x)= 19x+4
C. f(x)= x5 and g(x)= 5√x
D. f(x)= x/x + 20 and g(x)= 20x/x-1

Respuesta :

ANSWER

A,B, and C

EXPLANATION

If

[tex]f(g(x))=g(f(x))=x[/tex]

then f and g are inverse functions.

A.

[tex]f(x) = \frac{x + 1}{6} [/tex]

[tex]g(x) = 6x - 1[/tex]

[tex]f(g(x)) = \frac{6x - 1 + 1}{6} = \frac{6x}{6} = x[/tex]

B.

[tex]f(x) = \frac{x - 4}{19} [/tex]

[tex]g(x) = 19x + 4[/tex]

[tex]f(g(x)) = \frac{19x + 4 - 4}{19} = \frac{19x}{19} = x[/tex]

C.

[tex]f(x) = {x}^{5} [/tex]

[tex]g(x) = \sqrt[5]{x} [/tex]

[tex]f(g(x)) = (\sqrt[5]{x})^{5} = x[/tex]

D.

[tex]f(x) = \frac{x}{x + 20 } [/tex]

[tex]g(x) = \frac{20x}{x - 1} [/tex]

[tex]f(g(x)) = \frac{ \frac{20x}{x - 1} }{ \frac{20x}{x - 1} + 20} = \frac{20x}{40x - 20} = \frac{x}{2x - 1} [/tex]

The correct answers are A, B , C