The coordinates G(7,3), H(9, 0), (5, -1) form what type of polygon?
an obtuse triangle
an acute triangle
an equilateral triangle
o a right triangle

Respuesta :

Answer:

an acute triangle

Step-by-step explanation:

Given:

vertex 1 = (7,3)

vertex 2 = (9,0)

vertex 3 = (5,-1)

Now finding the length of each side of the triangle

Using distance formula, to find the length of side between vertex 1 and 2

d=[tex]\sqrt{(x2-x1)^{2}+ (y2-y1)^{2} }[/tex]

Putting values of x1=7 , x2=9, y1=3 and y2=0

d=[tex]\sqrt{(9-7)^{2}+ (0-3)^{2} }\\ =\sqrt{2^{2}+ 3^{2} }\\ =\sqrt{4+9} \\=\sqrt{13}[/tex]

Using distance formula, to find the length of side between vertex 1 and 3

Putting values of x1=7 , x2=5, y1=3 and y2=-1

d=[tex]\sqrt{(5-7)^{2}+ (-1-3)^{2} }\\ =\sqrt{2^{2}+ 4^{2} }\\ =\sqrt{4+16} \\=\sqrt{20[/tex]

Using distance formula, to find the length of side between vertex 2 and 3

Putting values of x1=9 , x2=5, y1=0 and y2=-1

d=[tex]\sqrt{(5-9)^{2}+ (-1-0)^{2} }\\ =\sqrt{4^{2}+ 1^{2} }\\ =\sqrt{16+1} \\=\sqrt{17[/tex]

Hence the three sides of triangle are:

√13, √20, √17

by Pythagoras theorem

if c^2= a^2 + b^2 then triangle is right triangle

if c^2> a^2 + b^2 then triangle is obtuse triangle

if c^2<a^2 + b^2 then triangle is acute triangle

Now let a=√13 b=√17 and c=√20 then:

a^2 + b^2 = 13+17

                 = 30

c^2=20

and 20 < 30 which means c^2<a^2 + b^2 then triangle is acute triangle !