Respuesta :

if the rectangular coordiante is (x,y) and the polar coordinate is (R,t), then they are related as follows:

R^2=x^2+y^2

tant=y/x

1.(pi,pi/4)

here, R=

[tex] \sqrt{ {\pi}^{2} + { (\frac{\pi}{4} })^{2} } = \sqrt{ \frac{17 {\pi}^{2} }{16} } = \frac{\pi}{4} \sqrt{17} \\tant = \frac{ \frac{\pi}{4} }{4} \\ t = {tan}^{ - 1} \pi = 89.682[/tex]

therefore the polar form of Q.1 is

(pi sq. root 17/4,89.682°)

you can do 2 in similar way.