Respuesta :
Answer:
[tex]2\vec{v}-6\vec{u}=(-52,48) \\ \\ ||2\vec{v}-6\vec{u}||=75.28}[/tex]
Step-by-step explanation:
In this problem we have two vectors:
[tex]\vec{u}=(5,-7) \ and \ \vec{v}=(-11,3)[/tex]
So we need to find two things:
[tex]2\vec{v}-6\vec{u}[/tex]
and:
[tex]||2\vec{v}-6\vec{u}||[/tex]
FIRST:
In this case we have the multiplication of vectors by scalars. A scalar is a simple number, so:
[tex]2\vec{v}-6\vec{u} \\ \\ Replace \ \vec{v} \ and \ \vec{u} \ by \ the \ given \ vectors: \\ \\ 2(-11,3)-6(5,-7) \\ \\ Multiply \ each \ component \ by \ the \ corresponding \ scalar:\\ \\ (2\times (-11),2\times 3)+(-6\times 5,-6\times (-7)) \\ \\ (-22,6)+(-30,42) \\ \\ Sum \ of \ vectors: \\ \\ (-22-30,6+42) \\ \\ \therefore \boxed{(-52,48)}[/tex]
SECOND:
If we name:
[tex]\vec{w}=2\vec{v}-6\vec{u}[/tex]
Then, [tex]||2\vec{v}-6\vec{u}||[/tex] is the magnitude of the vector [tex]\vec{w}[/tex]. Therefore:
[tex]||\vec{w}||=||2\vec{v}-6\vec{u}|| \\ \\ ||\vec{w}||=||(-52,48)|| \\ \\ ||\vec{w}||=\sqrt{(-58)^2+48^2} \\ \\ ||\vec{w}||=\sqrt{3364+2304} \\ \\ ||\vec{w}||=\sqrt{5668} \\ \\ \boxed{||\vec{w}||=75.28}[/tex]
Answer:
[tex]2v-6u=(-52,48)[/tex]
[tex]||2\vec{v}-6\vec{u}||=75.28[/tex]
Step-by-step explanation:
Given : If Vector u=(5,-7) and v=(-11,3)
To find : The value of 2v-6u and ||2v-6u||?
Solution :
We have given,
[tex]\vec{u}=(5,-7)[/tex] and [tex]\vec{v}=(-11,3)[/tex]
Substitute in [tex]2v-6u[/tex]
[tex]= 2(-11,3)-6(5,-7)[/tex]
[tex]= (2\times (-11),2\times 3)+(-6\times 5,-6\times (-7))[/tex]
[tex]=(-22,6)+(-30,42)[/tex]
Adding the two vectors,
[tex]=(-22-30,6+42)[/tex]
[tex]=(-52,48)[/tex]
So, [tex]2v-6u=(-52,48)[/tex]
Now, we find the value of [tex]||2\vec{v}-6\vec{u}||[/tex]
Substitute the value,
[tex]||2\vec{v}-6\vec{u}||=||(-52,48)|| \\ \\ ||||2\vec{v}-6\vec{u}||=\sqrt{(-58)^2+48^2} \\ \\ ||||2\vec{v}-6\vec{u}||=\sqrt{3364+2304} \\ \\ ||2\vec{v}-6\vec{u}||=\sqrt{5668} \\ \\||2\vec{v}-6\vec{u}||=75.28[/tex]
So, [tex]||2\vec{v}-6\vec{u}||=75.28[/tex]