Respuesta :

SOH CAH TOA: sinθ = opp/hyp, cosθ = adj/hyp, tanθ = opp/adj

So we go through all of the values:

sinD = ⁴/₅

sinC = ³/₅

sinD * cosD = ⁴/₅ * ³/₅ = ¹²/₂₅

tanC * tanD = ³/₄ * ⁴/₃ = 1 --> Doesn't match with anything

cosC * tan D = ⁴/₅ * ⁴/₃ = ¹⁶/₁₅

Answer:

The ratios are as follows:

  [tex]\sin D=\dfrac{4}{5}[/tex]

  [tex]\sin C=\dfrac{3}{5}[/tex]

  [tex]\sin D\times \cos D=\dfrac{12}{25}[/tex]

  [tex]\tan C\times \tan D=1[/tex]

  [tex]\cos C\times \tan D=\dfrac{16}{15}[/tex]

Step-by-step explanation:

The trignometric ratio are defined as follows:

[tex]\sin \theta=\dfrac{opposite\ side}{hypotenuse}[/tex]

where opposite side is the side opposite to angle theta

and

[tex]\cos \theta=\dfrac{adjacent\ side}{hypotenuse}[/tex]

and adjacent side the side which is adjacent to angle θ and hypotenuse is the hypotenuse of the right angled triangle.

and

[tex]\tan \theta=\dfrac{opposite\ side}{adjacent\ side}[/tex]

Hence, from the right angled triangle that is provided to us we have:

[tex]\sin D=\dfrac{4}{5}[/tex]

[tex]\sin C=\dfrac{3}{5}[/tex]

and [tex]\cos D=\dfrac{3}{5}[/tex]

[tex]\cos C=\dfrac{4}{5}[/tex]

[tex]\tan C=\dfrac{3}{4}[/tex]

and [tex]\tan D=\dfrac{4}{3}[/tex]

Hence,

[tex]\sin D\times \cos D=\dfrac{4}{5}\times \dfrac{3}{5}\\\\\\\sin D\times \cos D=\dfrac{12}{25}[/tex]

[tex]\tan C\times \tan D=\dfrac{3}{4}\times \dfrac{4}{3}\\\\\\\tan C\times \tan D=1[/tex]

and

[tex]\cos C\times \tan D=\dfrac{4}{5}\times \dfrac{4}{3}\\\\\\\cos C\times \tan D=\dfrac{16}{15}[/tex]