Respuesta :

Answer:

The center is ( -5, 8)  and radius is 13.

Step-by-step explanation:

The center of a circle is given (h,k) and the radius is r. The formula is

(x-h)²+ (y-k)²=r², so we need to express our given into that form.

To start, -10x+80+16y=x^2+y^2

80 = x²+ 10x + y²-16y or  x²+ 10x + y²-16y = 80

we need to use the steps in completing the square

x²+ 10x + _____ + y²-16y + _____ = 80+ ____+_____

use (b/2)² in the blanks

x²+ 10x + 25 + y²-16y + 64 = 80+ 25+64

on the left side of the equation factor them while simplify the right side

(x- (-5))²+ (y-8)² = 169.

Now our equation is in the form of  (x-h)²+ (y-k)²=r²

so h = -5 k = 8 and r is 13.

Answer:

Center: (-5,8)

Radius: 13

Step-by-step explanation:

The equation of the circle in center-radius form is:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Where the point (h,k)  is the center of the circle and "r" is the radius.

Subtract 16y from both sides of the equation:

[tex]-10x+80+16y-16y=x^2+y^2-16y\\\\-10x+80=x^2+y^2-16y[/tex]

Add 10x to both sides:

[tex]-10x+80+10x=x^2+y^2-16y+10x\\\\80=x^2+y^2-16y+10x[/tex]

Make two groups for variable "x" and variable "y":

[tex](x^2+10x)+(y^2-16y)=-80[/tex]

Complete the square:

Add [tex](\frac{10}{2})^2=5^2[/tex] inside the parentheses of "x".

Add  [tex](\frac{16}{2})^2=8^2[/tex]  inside the parentheses of "y".

Add [tex]5^2[/tex] and [tex]8^2[/tex] to the right side of the equation.

Then:

[tex](x^2+10x+5^2)+(y^2-16y+8^2)=80+5^2+8^2\\\\(x^2+10x+5^2)+(y^2-16y+8^2)=169[/tex]

We know that [tex]\sqrt{169}=13[/tex]

Then, rewriting, you get that the equation of the circle in center-radius form is:

 [tex](x+5)^2+(y-8)^2=13^2[/tex]

You can observe that the radius of the circle is:

[tex]r=13[/tex]

And the center is:

[tex](h,k)=(-5,8)[/tex]