Respuesta :

gmany

Answer:

[tex]\large\boxed{\sqrt{\dfrac{55x^7y^6}{11x^{11}y^8}}=\dfrac{\sqrt5}{x^2y}}[/tex]

Step-by-step explanation:

[tex]\sqrt{\dfrac{55x^7y^6}{11x^{11}y^8}}=\sqrt{\dfrac{55}{11}\cdot\dfrac{x^7}{x^{11}}\cdot\dfrac{y^6}{y^8}}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\=\sqrt{5x^{7-11}y^{6-8}}=\sqrt{5x^{-4}y^{-2}}\qquad\text{use}\ \sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\=\sqrt5\cdot\sqrt{x^{-4}}\cdot\sqrt{y^{-2}}=\sqrt5\cdot\sqrt{x^{(-2)(2)}}\cdot\sqrt{y^{(-1)(2)}}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=\sqrt5\cdot\sqrt{(x^{-2})^2}\cdot\sqrt{(y^{-1})^2}\qquad\text{use}\ \sqrt{a^2}=a[/tex]

[tex]=\sqrt5\cdot x^{-2}\cdot y^{-1}\qquad\text{use}\ a^{-n}=\dfrac{1}{a^n}\to a^{-1}=\dfrac{1}{a}\\\\=\sqrt5\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}=\dfrac{\sqrt5}{x^2y}[/tex]