Answer:
(4x² + 3)(16[tex]x^{4}[/tex] - 12x² + 9)
Step-by-step explanation:
A sum of cubes factors as
a³ + b³ = (a + b)(a² - ab + b²)
64[tex]x^{6}[/tex] = (4x²)³ ⇒ a = 4x²
27 = 3³ ⇒ b = 3
Hence
64[tex]x^{6}[/tex] + 27
(4x² + 3)((4x²)² - (4x² × 3) + 3²)
= (4x² + 3)(16[tex]x^{4}[/tex] - 12x² + 9)