[tex]f(x) - \frac{x^{2}-4 }{x^{4} +x^{3} -4x^{2}-4 }[/tex]


What is the:

Domain:

V.A:

RootsL

Y-Int:

H.A:

Holes:

O.A:


Also, graph it.

Respuesta :

a) The given function is

[tex]f(x)=\frac{x^2-4}{x^4+x^3-4x^2-4}[/tex]

The domain refers to all values of x for which the function is defined.

The function is defined for

[tex]x^4+x^3-4x^2-4\ne0[/tex]

This implies that;

[tex]x\ne -2.69,x\ne 1.83[/tex]

b) The vertical asymptotes are x-values that makes the function undefined.

To find the vertical asymptote, equate the denominator to zero and solve for x.

[tex]x^4+x^3-4x^2-4=0[/tex]

This implies that;

[tex]x= -2.69,x=1.83[/tex]

c) The roots are the x-intercepts of the graph.

To find the roots, we equate the function to zero and solve for x.

[tex]\frac{x^2-4}{x^4+x^3-4x^2-4}=0[/tex]

[tex]\Rightarrow x^2-4=0[/tex]

[tex]x^2=4[/tex]

[tex]x=\pm \sqrt{4}[/tex]

[tex]x=\pm2[/tex]

The roots are [tex]x=-2,x=2[/tex]

d) The y-intercept is where the graph touches the y-axis.

To find the y-inter, we substitute;

[tex]x=0[/tex] into the function

[tex]f(0)=\frac{0^2-4}{0^4+0^3-4(0)^2-4}[/tex]

[tex]f(0)=\frac{-4}{-4}=1[/tex]

e) to find the horizontal asypmtote, we take limit to infinity

[tex]lim_{x\to \infty}\frac{x^2-4}{x^4+x^3-4x^2-4}=0[/tex]

The horizontal asymtote is [tex]y=0[/tex]

f) The greatest common divisor of both the numerator and the denominator is 1.

There is no common factor of the numerator and the denominator which is  at least a linear factor.

Therefore the function has no holes.

g) The given function is a proper rational function.

There is no oblique asymptote.

See attachment for graph.

Ver imagen kudzordzifrancis