help me please, match the number to the letter

Answer: 1b 2c 3e? 4d 5a
Step-by-step explanation:
There are 2 items that need to be checked.
Midpoint:
[tex]Midpoint = \bigg(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg)\\\\\\1)\ \bigg(\dfrac{-4+2}{2},\dfrac{-1+10}{2}\bigg)=\bigg(\dfrac{-2}{2},\dfrac{9}{2}\bigg)=(-1, 4.5)\implies \text{equation b}\\\\\\2)\ \bigg(\dfrac{1+7}{2},\dfrac{3-10}{2}\bigg)=\bigg(\dfrac{8}{2},\dfrac{-7}{2}\bigg)=(4, -3.5)\implies \text{equation c}\\\\\\3)\ \bigg(\dfrac{4-8}{2},\dfrac{-2+6}{2}\bigg)=\bigg(\dfrac{-4}{2},\dfrac{4}{2}\bigg)=(-2,2 )\implies \text{none of the equations}[/tex]
[tex]4)\ \bigg(\dfrac{6-4}{2},\dfrac{3-13}{2}\bigg)=\bigg(\dfrac{2}{2},\dfrac{-10}{2}\bigg)=(1, -5)\implies \text{equation d}\\\\\\5)\ \bigg(\dfrac{7-1}{2},\dfrac{5+8}{2}\bigg)=\bigg(\dfrac{6}{2},\dfrac{13}{2}\bigg)=(3, 6.5)\implies \text{equation a}[/tex]
Diameter:
distance between coordinates = 2√r² (from circle equation)
[tex]\text{formula for coordinates is: }d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\1)\ \text{Coordinates: } d=\sqrt{(-4-2)^2+(-1-10)^2}=\sqrt{36+121}=12.5\\b)\ \text{Circle: }2\sqrt{39.25}=12.5\\\\\\2)\ \text{Coordinates: } d=\sqrt{(1-7)^2+(3+10)^2}=\sqrt{36+169}=14.3\\c)\ \text{Circle: }2\sqrt{51.25}=14.3\\\\\\4)\ \text{Coordinates: } d=\sqrt{(6+4)^2+(3+13)^2}=\sqrt{100+256}=18.9\\d)\ \text{Circle: }2\sqrt{89}=18.9[/tex]
[tex]5)\ \text{Coordinates: } d=\sqrt{(7+1)^2+(5-8)^2}=\sqrt{64+9}=8.5\\a)\ \text{Circle: }2\sqrt{18.25}=8.5[/tex]
Check:
Graph to confirm your answers are correct (see attached)