What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and T(22, 8)? Round to the nearest hundredth, if necessary. units

Respuesta :

Answer:

The perimeter of the trapezoid is [tex]38.25\ units[/tex]

Step-by-step explanation:

we know that

The perimeter of the trapezoid is the sum of its four side lengths

so

In this problem

[tex]P=QR+RS+ST+QT[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]Q(8, 8), R(14, 16), S(20, 16),T(22, 8)[/tex]

step 1

Find the distance QR

[tex]Q(8, 8), R(14, 16)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(16-8)^{2}+(14-8)^{2}}[/tex]

[tex]d=\sqrt{(8)^{2}+(6)^{2}}[/tex]

[tex]d=\sqrt{100}[/tex]

[tex]QR=10\ units[/tex]

step 2

Find the distance RS

[tex]R(14, 16), S(20, 16)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(16-16)^{2}+(20-14)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(6)^{2}}[/tex]

[tex]d=\sqrt{36}[/tex]

[tex]RS=6\ units[/tex]

step 3

Find the distance ST

[tex]S(20, 16),T(22, 8)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(8-16)^{2}+(22-20)^{2}}[/tex]

[tex]d=\sqrt{(-8)^{2}+(2)^{2}}[/tex]

[tex]d=\sqrt{68}[/tex]

[tex]ST=8.25\ units[/tex]

step 4

Find the distance QT

[tex]Q(8, 8),T(22, 8)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(8-8)^{2}+(22-8)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(14)^{2}}[/tex]

[tex]d=\sqrt{196}[/tex]

[tex]QT=14\ units[/tex]

step 5

Find the perimeter

[tex]P=10+6+8.25+14=38.25\ units[/tex]

Answer:

38.25

Step-by-step explanation:

took the test edge