What values of c and d make the equation true? Assume x>0 and y >=0.

square root of 50x^6y^3/9x^8 = 5y^c square root of 2y/dx.


A.c = 1, d = 3

B.c = 1, d = 32

C.c = 2, d = 8

D.c = 2, d = 32

What values of c and d make the equation true Assume xgt0 and y gt0square root of 50x6y39x8 5yc square root of 2ydxAc 1 d 3Bc 1 d 32Cc 2 d 8Dc 2 d 32 class=

Respuesta :

frika

Answer:

A. c=1, d=3

Step-by-step explanation:

If x>0 and y>0, then

[tex]\sqrt{\dfrac{50x^6y^3}{9x^8}}=\sqrt{\dfrac{25\cdot 2y^2\cdot y}{9x^2}}=\dfrac{5y\sqrt{2y}}{3x}.[/tex]

If

[tex]\dfrac{5y\sqrt{2y}}{3x}[/tex]

is equal to

[tex]\dfrac{5y^c\sqrt{2y}}{dx},[/tex]

then

[tex]y=y^c\Rightarrow c=1,\\ \\3x=dx\Rightarrow d=3.[/tex]