Consider the function below. x -1 0 1 2 f(x) -2 3 8 13 Which of the following functions could be the inverse of function f? A. x 1 0 -1 -2 s(x) -2 3 8 13 B. x -2 3 8 13 q(x) -1 0 1 2 C. x -2 -3 -8 -13 r(x) 1 0 -1 -2 D. x -1 0 1 2 p(x) 2 -3 -8 -13

Respuesta :

Answer: B

x         q(x)

-2          -1

3            0

8            1

13           2

Step-by-step explanation:

An inverse of a function is a reflection across the y=x line. This results in each (x,y) point becoming (y,x).

x         f(x)

-1          -2

0           3

1            8

2           13

So the inverse becomes:

x         Inverse

-2          -1

3            0

8            1

13           2

Answer:

The correct option is B.

Step-by-step explanation:

The table of values of a function is given below:

x    :     -1    0    1    2

f(x) :    -2    3     8   13

If a function is defined f:R→R

[tex]f(x)=\{(x,y):x\in R,y\in R\}[/tex]

them the inverse of function is defined as

[tex]f^{-1}(x)=\{(y,x):x\in R,y\in R\}[/tex]

The table of values of inverse function is

x      :    -2    3     8   13

f⁻¹(x):     -1    0    1    2

We can say that q(x) is the inverse function of f(x). Therefore the correct option is B.