What is the value of s to the nearest whole number? HELP!

Answer:
14
Step-by-step explanation:
Using the law of cosines on ΔRST, then
s² = 9² + 8² - (2 × 9 × 8 × cos111° )
= 81 + 64 - ( 144 × cos111° )
= 145 - (- 51.6)
= 145 + 51 . 6 = 196.6 ( take the square root of both sides )
s = [tex]\sqrt{196.6}[/tex] ≈ 14
The answer is: 14
Using the law of cosines and the given information, we can find the value of s.
Law of cosines is:
[tex]a^{2}=b^{2}+c^{2}-2abcos(A)[/tex]
Where,
[tex]a=s\\b=9\\c=8\\A=111(degrees)[/tex]
By substituting we have:
[tex]s=\sqrt{9^{2}+8^{2}-2*9*8*cos(111)}\\\\s=\sqrt{81+64-(144)*(-0.35)}=\sqrt{145+50.4}=\sqrt{195.4}=13.98=14[/tex]
So, the correct answer is:
[tex]s=14[/tex]
Have a nice day!