Respuesta :

Answer:

a. 0.25

Step-by-step explanation:

The given expression is

[tex]\lim_{x \to 2} \frac{x-2}{x^2-4}[/tex]

Factor the denominator using difference of two squares.

[tex]\lim_{x \to 2} \frac{x-2}{(x-2)(x+2)}[/tex]

Cancel out common factors;

[tex]\lim_{x \to 2} \frac{1}{(x+2)}[/tex]

We plug in 2 to get

[tex]\lim_{x \to 2} \frac{1}{(x+2)}=\frac{1}{2+2}[/tex]

[tex]\lim_{x \to 2} \frac{1}{(x+2)}=\frac{1}{4}=0.25[/tex]

Answer:

The correct answer option is A. 0.25.

Step-by-step explanation:

We are given the following expression and we are to find its limit:

[tex] lim_\left \{ {{ x = 2 } [/tex] [tex] \frac { x - 2 } { x ^ 2 - 4 } [/tex].

First of all, we will simplify the expression by factorizing the term in the denominator:

[tex] \frac { x - 2 } { x ^ 2 - 4 } = \frac { x - 2 } { ( x - 2 ) ( x + 2 ) }[/tex]

Cancelling the common terms to get:

[tex]\frac{1}{x+2}[/tex]

Substituting the given value for x to get:

[tex]\frac{1}{2+2}[/tex] = 0.25