Answer:
[tex]\large\boxed{y=6x+9}[/tex]
Step-by-step explanation:
The slope-intercept form of the equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points E(-1, 3) and F(-2, -3). Substitute:
[tex]m=\dfrac{-3-3}{-2-(-1)}=\dfrac{-6}{-2+1}=\dfrac{-6}{-1}=6[/tex]
Therefore the equation of a line is:
[tex]y=6x+b[/tex]
Put the coordinates of the point E(-1, 3) to the equation and solve it for b:
[tex]3=6(-1)+b[/tex]
[tex]3=-6+b[/tex] add 6 to both sides
[tex]9=b\to b=9[/tex]
Finally we have:
[tex]y=6x+9[/tex]