Respuesta :

gmany

Answer:

[tex]\large\boxed{y=6x+9}[/tex]

Step-by-step explanation:

The slope-intercept form of the equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points E(-1, 3) and F(-2, -3). Substitute:

[tex]m=\dfrac{-3-3}{-2-(-1)}=\dfrac{-6}{-2+1}=\dfrac{-6}{-1}=6[/tex]

Therefore the equation of a line is:

[tex]y=6x+b[/tex]

Put the coordinates of the point E(-1, 3) to the equation and solve it for b:

[tex]3=6(-1)+b[/tex]

[tex]3=-6+b[/tex]             add 6 to both sides

[tex]9=b\to b=9[/tex]

Finally we have:

[tex]y=6x+9[/tex]