Respuesta :

Answer:

[tex]\lim_{x\rightarrow 0}g(x)[/tex] does not exist.

D is correct.

Step-by-step explanation:

We are given,

[tex]g(x)=\left\{\begin{matrix} \sin\left ( \dfrac{\pi}{x} \right )& \ \ \ if\ \ x\neq 0\\ 1& \ \ \ if\ \ x\neq 0\end{matrix}\right.[/tex]

For continuous function, LHL=RHL=f(0)

Using squeeze theorem,

If [tex]g(x)\leq f(x)\leq h(x)[/tex]

then [tex]\lim_{x\rightarrow a}g(x)\leq \lim_{x\rightarrow a}f(x)\leq \lim_{x\rightarrow a}h(x)[/tex]

As we know

[tex]-1\leq \sin\left ( \dfrac{\pi}{x} \right )\leq 1[/tex]

Apply Limit both sides

[tex]\lim_{x\rightarrow 0}(-1)\leq \lim_{x\rightarrow 0}\sin\left ( \dfrac{\pi}{x} \right )\leq \lim_{x\rightarrow a}1[/tex]

[tex]\lim_{x\rightarrow 0}(-1)=-1[/tex]

[tex]\lim_{x\rightarrow 0}(1)=1[/tex]

[tex]-1\neq 1[/tex]

[tex]LHL\neq RHL=g(0)[/tex]

If [tex]LHL\neq RHL[/tex] then limit does not exist.

Hence, [tex]\lim_{x\rightarrow 0}g(x)[/tex] does not exist.

D is correct.

Answer:

D

Step-by-step explanation: EDGE 2020