Respuesta :
ANSWER
[tex]P( \bar B)= \frac{3}{10} [/tex]
EXPLANATION
The number of blue marbles is
n(B)=77
The number of Green marbles is
n(G)=22
The number of red marbles is
n(R)=11
The total number of marbles is
n(S)=110
The probability of picking a blue marble is
[tex]P(B)= \frac{n(B)}{n(S)} [/tex]
[tex]P(B)= \frac{77}{110} [/tex]
[tex]P(B)= \frac{7}{10} [/tex]
The probability of not selecting a blue marble is
[tex]P( \bar B)= 1 - P(B).[/tex]
[tex]P( \bar B)= 1 - \frac{7}{10} [/tex]
[tex]P( \bar B)= \frac{3}{10} [/tex]
[tex]P( \bar B)= \frac{3}{10} [/tex]
EXPLANATION
The number of blue marbles is
n(B)=77
The number of Green marbles is
n(G)=22
The number of red marbles is
n(R)=11
The total number of marbles is
n(S)=110
The probability of picking a blue marble is
[tex]P(B)= \frac{n(B)}{n(S)} [/tex]
[tex]P(B)= \frac{77}{110} [/tex]
[tex]P(B)= \frac{7}{10} [/tex]
The probability of not selecting a blue marble is
[tex]P( \bar B)= 1 - P(B).[/tex]
[tex]P( \bar B)= 1 - \frac{7}{10} [/tex]
[tex]P( \bar B)= \frac{3}{10} [/tex]
Answer: [tex]\dfrac{3}{10}[/tex]
Step-by-step explanation:
Given: The number of blue marbles = 77
The total number of blue marbles = [tex]77+22+11=110[/tex]
Now, the probability of choosing a blue marble is given by :-
[tex]\text{P( draw a blue)}=\dfrac{\text{Number of blue marbles}}{\text{ Total number of marbles}}\\\\\Rightarrow\ \text{P(draw a blue)}=\dfrac{77}{110}=\dfrac{7}{10}[/tex]
Now, the probability of not choosing a blue marble is given by :-
[tex]\text{P(not draw a blue)}=1-\text{P( draw a blue)}\\\\\Rightarrow\ \text{P(not draw a blue)}= 1-\dfrac{7}{10}\\\\\Rightarrow\ \text{P(not draw a blue)}=\dfrac{3}{10}[/tex]